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D I S P E R S E  S Y S T E M S  W I T H  S U S P E N D E D  

P A R T I C L E S :  T H E  P R O B L E M  O F  S C A L I N G  

A N D  H Y D R O D Y N A M I C - S I M I L A R I T Y  N U M B E R S  

Yu. S. Teplitsldi and V. I. Kovenskii UDC 66.096.5 

Within the framework of similarity theory, a rather universal method is developed for generalizing 

experimental data on the hydrodynamics of a wide class o1' disperse systems with ascending motion of  a gas. 

This method is based on use of the excess gas velocity u - u t, which is a measure of the kinetic energy of 

the particles. Using this quantity, the hydrodynamic-similarity numbers Fr t and J~s are .formulated, which 

are gener_a_!i_zed characteristics of such systems. Specific examples of applying this method are given. 

In practice, wide use is made of disperse systems with suspended particles. These are a fluidized bed, 

vertical pneumatic transport, and an intermediate disperse medium, i.e., a circulating fluidized bed. The study of 

various aspects of the behavior of these systems is the concern of extensive literature, for example, [1-6 ]. The 
methods developed for description, as a rule, are highly specialized, i.e., they are adapted to a specific individual 

system. In the present work we attempt to analyze in a unified context the problem of scaling in all three systems. 
As a result, we determine the minimum number of dimensionless groups that are composed of dimensional inde- 

pendent variables and that completely determine the similarity of hydrodynamic processes in the above-mentioned 

disperse systems. The possibility for this problem to be solved is based on the presence of one very substantial 
similarity in these systems: the weight of the particles in them is compensated by the friction force against the gas, 

a n d  the entire excess power Ap(u - u t) expended by the fan goes to acceleration of the suspended particles and 

creation of the complex picture of their collective motion. The latter can include translational and pulsational 
motion, internal circulation, etc. The main difference between the disperse systems considered consists in the 
specific features of this motion: 

1) in a fluidized bed overall directed motion of the solid phase is absent, while the presence of gas bubbles 
provides intense pulsational motion of the particles against a background of their internal circulation (in wakes of 

bubbles - upward, in the remaining emulsion phase - downward); here the existence of some circulation loops is 
possible [6 ]; 

2) a circulating fluidized bed is characterized by rather intense motion of the particles in a single internal 

circulation loop (in the bed core - upward, in an annular zone at the riser walls - downward) against a background 
of overall directed motion; 

3) vertical pneumatic transport is upward-directed motion of the particles over the entire cross section of 
the riser against a background of small-scale pulsational motion. 

In all the variations in the character of the particle motion in the systems considered the excess gas velocity 
is a measure of the intensity of this motion. It is apparent that the quantity u - u t can be a charactersitic scale of 

the velocity in describing the hydrodynamic processes within the framework of similarity theory. As determining 
linear scales of the collective particle motion, it is natural to take geometric dimensions of the system, namely, the 
height of the bed (riser) H and its diameter D. With account for these assumptions we can write the following 

equation for determining the desired hydrodynamic characteristic: 

r = /  ' u-u , g,h, ,D . ( i )  

Academic Scientific Complex "A. V. Luikov Heat and Mass Transfer Institute of the National Academy of 
Sciences of Belarus," Minsk, Belarus. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 72, No. 2, pp. 312-316, 

March-April, 1999. Original article submitted November 12, 1997. 

292 1062-0125/99/7202-0292522.00 @1999 Kluwer Academic/Plenum Publishers 



It should be noted that the parameters Js and H 0, which determine the mass of the disperse material in the system, 

are mutually exclusive: in accounting for the parameter H 0 Ca fluidized bed; a circulating fluidized bed operating 

in accordance with the "furnace" scheme, when the mass of the material in the riser is assigned as M = 

ps(1 - e0)HoS), the parameter .Is is neglected in Eq. (1). And, conversely, in assigning Js (a circulating fluidized 

bed operating by the "chemical reactor" scheme; vertical pneumatic transport) the parameter H 0 is neglected in Eq. 
(1). 

Using the ~-theorem of dimension theory [7 ], we write the dimensionless analog of (1) 

F ' = . f  , Fr t h (2) 

k t ' o / ' J  ' "  ' 

which with allowance for the aforesaid gives two equations: 

a) for a fluidized bed and a circulating fluidized bed - a "furnace" 

r = H0 Fr t ,  h , ; (3)  

b) for a circulating fluidized bed - a "chemical reactor" - and vertical pneumatic transport 

F =~p , Fr , H '  " 

Obtained relations (3) and (4) contain a number of dimensionless governing parameters and allow one to establish 

rules of scaling for the hydrodynamic processes. These relations include two characteristic combinations Fr t = 

(u - u~)2/gH and ~ - 1s /ps (u  - u t) that ha__ve the following physical meaning: Fr t is the ratio of the kinetic energy 

of the particles to their potential energy; J~s is the concentration of the particles in the system. Using specific 

examples, we will show that Eqs. (3) and (4) are actually a general form of dimensionless relations that generalize 

experimental data. 

1) A f luidized bed. For the diameter of the gas bubbles the following equation was derived in [8 ]: 

--~ = 1.3 Fr , (5) 

which generalizes a large amount of experimental data (more than 20 works). The folkxwing formula for calculating 

the velocity of the gas bubbles was established in [91: 

Vb - 1.9 Fr (6) 
u - u  0 

In [10 ], it was suggested that the expansion (concentration) of an inhomogeneous fluidized bed be calculated using 

the ratio 

[ . . . .  0.7 Fr (7) 
H 0 1 - e  

2) A circulating f luidized bed. This bed has properties of both a fluidized bed (in its lower portion) and a 

pneumatic-transport system (in the transport zone). For a bed operating by the "furnace" scheme, the following 

relation was obtained in [ l l  ] to calculate the distribution of the concentration (p = ps(1 - e)) of particles in the 

transport zone: 

P-- = 0.053 Fr 0"62 (8) 
Ps 
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Fig. I. Generalization of experimental data on the magnitude of the tangential 

stress on the riser wail: I) d - 0.113 mm, 2) 0.I, 3) 0.2, 4) 1.18, 5) 0.06; 

I-4) [12], 5) [13]. 

which agrees well with Eq. (3) (the absence of the simplex Ho/H is caused by the fact that the quantity H0 was 
unchanged in the data analyzed). For a bed operating in accordance with the "chemical reactor" scheme, the 
following very simple equation was derived in [11 ] for the reactor transport zone: 

P- = 7, :h  -os2 
Ps [H'J ' f9) 

which generalizes a large amount of literature data (10 works) concerning measurement of the local concentration 
of particles. 

3) Vertical pneumatic transport. Here, Eq. (4) is valid, which because of the absence of internal circulation 
of particles in the system should be substantially simplified (the parameters h and H drop out of the number of 
governing parameters). We generalized experimental data [12, 13 ] on measurement of the tangential stress on the 
riser wall under conditions of pneumatic transport in a rarefied phase (1 - e <__ 2- 10-2). The following equation 
is obtained: 

T 
2 - 0.17 , / J s ,  (10) 

pfu 

represented by the solid line in Fig. 1. 

We can show that generally the concentration of particles in a pneumatic-transport system is calculated 
using the formula 

p 
m l u E - - m  

p, 1+7: 
(11) 

Indeed, the quantity Js is defined by the relation 

Js =Ps  (1 - e) V = p V .  (12) 

The velocity of motion of the particles is 

u - u ~  
V - -  - -  

E 
(13) 

Substitution of Eq. (13) into the formula for the mass flux (12) leads to the expression 
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Fig. 2. Dependence of the volumetric concentration of particles (a) and the 

pneumatic-transport efficiency (b) on the gas filtration velocity: I) P s "  2600 

kg/m a, d - 0.2.10 -3 m, Ar ,= 770, ut = 1.66 m/sec, uo - 0.05 m/sec; II) Ps == 
1089 kg/m a, d -  1.67.10 -3 m, Ar - 184,094, ut = 5.9 m/sec, uo = 0.45 m/sec; 

1) Is - 10 kg/(m2"sec), 2) 50, 3) 200. 

P A 

p, p, ( u -  + I , '  
11(a) 

which, as is easily seen, is the dimensional form of Eq. (11). Since the combination Js is a function of e (~ss = 

5 4At -~176  
l s / p s ( u  - u~) - 1 s / p s ( u  - ute " ),  see the Appendix), formula (11) is a transcendental equation with respect 

to e. Solutions of Eq. (11) for different values of At, u, and Is are shown in__ Fig. 2a. 

For most pneumatic-transport systems 1 - e _< 0.01. In this case, ~ ~- Js << ~ and Eq. (11) is simplified: 

#_ 
= 1 - ,  = , , .  ( 14 )  

Ps 

From the resulting values of e it is easy to calculate the pneumatic-transport efficiency [6 ]: 

-0.05 
5.4/U" 

V 1 u t e (15) 
r i - u - e  eu 

Figure 2b illustrates calculated values of ~/. From a comparison of Fig. 2 a and b it is readily seen that the region 
of concentrations that lies between the limiting regimes (transport in dense and rarefied phases) is energetically 

unprofitable. As is known [6 ], this is the region of so-called "bubbling" regimes, which are extremely unstable. 

Thus, it follows from the examples considered that relations (3) and (4) are actually a generalized form 

of the functional dependences of the hydrodynamic characteristics of disperse media of the indicated class on the 

governing dimensionless parameters. Among the latter there are the numbers Fr* and J~ constructed on the basis 

of the excess gas velocity u - u t. This quantity is a measure of the kinetic energy of the particles, and it plays the 

most important role in the analysis conducted. The numbers Fr* and ~ and Eqs. (3) and (4), which are the rules 

of scaling and determine the similarities of the hydrodynamic processes, can be useful in deriving dimensionless 

equations for other characteristics of disperse systems with suspended particles. 
A p p e n d i x  

Calculation of the velocity of particle flotation under conditions of constrain 

From the well-known Todes formulas for deternining ut and u t [6 ] 

utd Ar  (A. 1) 
Re t - - -  _ 

vf 18 + 0.61 

and 
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Re~ - u t d  -- A r e  4"75 

vf 18 + 0.6 

(A.2) 

it follows that 

u~ = (18 + 0.61 vr-~ ) e 4"75 

u t 18 + 0.6 V~--e - ~ y  
(A.3)  

From (A.3) it is possible to derive a convenient interpolational formula for calculation of u ~ / u t :  

u t 5.4Ar -~176  10 5) = e (10  _< Ar _< , (A .4 )  
U t 

which is an analog of the well-known Richardson-Zaki  formula [14 ]. When e -- 0.4 (a fluidized bed),  u~ ffi u0 (Fr t 

- Fr) and when �9 -* 1, u t -~ ut (Fr t -* Frt, J~s -* Js)- 

N O T A T I O N  

A r  - ( gd31v  2) ( p s / p f  - 1), Archimedes number; d, diameter of the particles; D, diameter of the bed (riser); 

Db, diameter of a gas bubble; Fr - (u - u0)2/gH, Fq  - (u - ut)2/gH, Fr~ - (u - ut)2/gH,  Froude numbers; g, 

free-fall acceleration; h, height over the gas distributor; H, height of the bed (riser); HO, initial height of the bed 

(1"10 - M / p s ( 1  -- e0)S); Js, specific mass flux of particles; Is " l s / p s ( u  - ut), J~s " 1 s / p s ( u  - u~), dimensionless 
mass fluxes of particles; M, mass of the particles in the bed (riser); Ap, head loss (Ap - p s ( l  - eo)gH0); S, cross 

section of the bed (riser); Ub, absolute velocity of the bubbles; u, gas velocity; u~, velocity of particle flotation 

under conditions of constrain; u0, velocity at the onset of flnidization (u t ~, u0 for e -* �9 0); ut, velocity of flotation 

of a single particle (u t -4, u t for �9 -~ I); v, absolute particle velocity; Vb, relative velocity of the bubbles (Vb " 
u b -- (u -- u0)); e, porosity; e 0, porosity at the onset of flnid iT~tion; vf, kinematic viscosity of the gas; p,  density; 

it, tangential stress on the riser wall. Subscripts: f, gas; s, particles; t, conditions of particle flotation. 
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